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Abstract

We discuss the scaling behavior of a state-of-the-art Configuration Interaction code for nuclear physics on modern
multicore computer architectures. In the CI approach, the quantum many-body problem is expressed as a large sparse
symmetric eigenvalue problem, of which the lowest eigenvalues and eigenvectors have to be computed. We compare
the performance of the pure MPI version with the hybrid MPI/OpenMP code on Cray XT4 and XT5 platforms. For
large core counts (typically 5,000 and above), the hybrid version is more efficient than pure MPI.
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1. Introduction

The structure of the atomic nucleus and its interactions with matter and radiation have long been the foci of
intense theoretical research aimed at a quantitative understanding based on the underlying strong inter-nucleon po-
tentials. Once validated, a successful approach promises predictive power for key properties of short-lived nuclei that
are present in stellar interiors and in other nuclear astrophysical settings. Moreover, new medical diagnostic and ther-
apeutic applications may emerge as exotic nuclei are predicted and produced in the laboratory. Fine tuning nuclear
reactor designs to reduce cost and increase both safety and efficiency are also possible outcomes with a high precision
theory.

Solving for nuclear properties with the best available nucleon-nucleon (NN) potentials [1, 2, 3], supplemented by
3-body (NNN) potentials as needed [4, 5, 6, 7], using a quantum many-particle framework that respects all known
symmetries of the potentials is referred to as an ”ab initio” problem and is recognized to be computationally hard. To
date, there are three ab initio approaches that have proven applicable to nuclei with more than 6 nucleons: Green’s
Function Monte Carlo [5], Coupled Cluster [8] and No Core Configuration Interaction (CI) methods [7, 9, 10, 11, 12].
All three are potentially exact methods of solution, and are computationally intensive methods funded under the
SciDAC program at the U.S. Department of Energy. Here we discuss the scaling behavior of MFDn (Many Fermion
Dynamics for nuclear structure) [13, 14, 15], which is a state-of-the-art numerical code for ab initio CI calculations
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of light nuclei. MFDn has good scaling properties using MPI on existing supercomputing architectures and recent
algorithmic improvements have significantly improved its overall performance [15]. Here, we demonstrate how the
improved MFDn code may be adapted to multicore platforms.

Processors equipped with 4 or more cores became ubiquitous in modern high-performance computers. The number
of cores per node is growing further to keep up with Moore’s law bringing the total number of cores in a supercomputer
to tens of thousands. To sustain the overall performance growth, one must prevent the cores from idling due to
the “memory wall”, which appears because the memory speed and access do not match the growth of processing
speed [16]. A way to deal with this disparage is to mask memory accesses and communications with computations.
Thus, algorithms exhibiting very high degrees of parallelism and data locality are being developed for multicore
architectures. A concomitant approach is to extract additional parallelism using hybrid message passing and shared
memory programming paradigms. In particular, Message Passing Interface (MPI) [17] and Open MP [18] may be
used to communicate among inter-node cores and intra-node cores, respectively. Recent studies [19, 20] showed a
feasibility of this approach.

In this paper, a hybrid MPI/OpenMP approach is applied to MFDn, which makes the package significantly more
efficient than when a pure MPI implementation is used. We show experiments on Cray XT5 and XT4 architectures at
the U.S. Department of Energy Oak Ridge National Laboratory (ORNL) and National Energy Research Supercom-
puting Center (NERSC), respectively.

2. No-Core Full Configuration calculations for nuclear structure

The nuclear wave functions satisfy the Schrödinger equation, that is, they are eigenfunctions of the Hamiltonian
operator H, with the eigenvalues being the corresponding energy

H |ψi〉 = E |ψi〉 . (1)

In the No-Core Shell Model (NCSM) [9] and No-Core Full Configuration (NCFC) [10, 11, 12] approaches, the wave
function Φ of a nucleus consisting of A nucleons (protons and neutrons) is expanded in an A-body basis of Slater
Determinants of single-particle states; that is

Φ(r1, . . . , rA) := 〈r1, . . . , rA|ψ〉 =
∑

ckΨk(r1, . . . , rA) , (2)

with Ψk the A-body basis functions. The interaction, typically a two-body (NN), sometimes supplemented by a three-
body (NNN) potential, is also expressed in this basis, as is the kinetic energy. Conventionally, one uses a harmonic
oscillator basis for the single-particle states, but it is straightforward to extend this approach to a more general single-
particle basis.

In principle, this basis is an infinite-dimensional complete basis. For practical calculations one has to truncate the
basis to a finite dimension. In the NCSM this truncation is governed by Nmax, the maximum number of harmonic
oscillator excitation quanta in the many-body basis. In the truncated basis space, the Schrödinger equation becomes
a finite matrix equation with a real, symmetric, sparse matrix. The lowest eigenvalue of this matrix corresponds to
the ground state energy, but typically we are also interested in the (low-lying) spectrum; we therefore typically solve
for the 10 to 15 lowest eigenvalues using the Lanczos algorithm. By performing calculations in a series of bases of
increasing dimension, one can extrapolate physical observables such as the mass or binding energy of a nucleus to the
result in the full, infinite-dimensional basis, with numerical error bars (NCFC approach) [10, 11, 12].

In order to extrapolate to the infinite-dimensional basis, we need a series of calculations with increasing Nmax,
and this is where the computational challenge is. As Nmax increases, the dimension of the many-body basis increases
exponentially, see Fig. 1. Furthermore, the sparsity of the matrix depends on the rank K of the potential: a two-body
potential (K = 2) leads to a much sparser many-body matrix than a three-body potential (K = 3). As the matrix size
increases, there is a clear need for high-performance computing: for a reliable extrapolation to the infinite model-
space, we would like to have Nmax ≥ 10. On currently available machines, the largest many-body basis dimension
that MFDn can deal with for three-body forces is about 1 billion, and for two-body forces we can go to about 10 to 15
billion.
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Figure 1: Left: basis space dimension as function of Nmax for a range of light nuclei; Right: number of non-zero matrix elements in the many-body
matrix as as function of Nmax for two-body, three-body, and four-body interactions.

3. Brief description of the code MFDn

The code MFDn, which is a parallel code for nuclear structure calculations using F90 and MPI, has been in
development for almost two decades. In the early development [13, 14] of the code the main focus has been efficient
use of memory; significant improvements in its performance have been made over the last 3 years [15, 21, 22, 23]
under the US Department of Energy’s Scientific Discovery through Advanced Computing (SciDAC) Program. Before
presenting its scaling properties, we first briefly outline the structure of the code.

MFDn constructs the many-body basis states and the Hamiltonian matrix, and solves for the lowest eigenstates
using the Lanczos algorithm. At the end of a run, it writes the nuclear wave functions to file, and evaluates selected
physical observables which can be compared to experimental data (the wave functions themselves are not experimen-
tally observable). The matrix is distributed in a 2-dimensional fashion over the processors, as indicated in Fig. 2, and
we work with the lower triangle only, because the matrix is symmetric (and real). The Lanczos vectors, needed for
re-orthoganalization after every matrix-vector multiplication, are stored distributed over all processors. Because of
the 2-dimensional distribution of the matrix, it runs on n(n + 1)/2 processors, where n is the number of “diagonal”
processors (see Fig. 2).

There are several distinct phases in the code, each with its own scaling and performance characteristics.

• Setup of basis
The first phase is a setup phase, in which the single-particle basis states are defined, and the A-body basis is
developed. The construction of the A-body basis is done on the n diagonal processors only, so this part does
not scale very well; however, generally this is only a very small part of the total runtime. The basis states are
constructed in a lexicographical order and distributed in a round-robin fashion [13, 15].

• Construction of sparse, real, symmetric matrix
A matrix element Hi j can only be nonzero if the two A-body basis states i and j differ by at most K single-
particle states (typically, we have K = 2 or K = 3). With a lexicographical ordering of the A-body basis states
on a single processor, neighboring basis states often differ by only one single-particle state, and nonzero matrix
elements tend to occur in blocks, see Fig. 2. A naive 2-dimensional distribution of this matrix leads to poor
load-balancing, both in terms of memory needs and in terms of CPU time. With the round-robin distribution
of the A-body basis states over the n diagonal processors, neigboring basis states tend to have very few single-
particle states in common and the nonzero matrix elements appear to be randomly distributed (right panel of
Fig. 2). This distribution of the matrix leads to excellent load-balancing, and may be useful for other large
sparse matrix problems.
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Figure 2: Left: Two-dimensional distribution of the lower triangle of the matrix and of the Lanczos vectors over n(n + 1)/2 processors with
n = 5. The first n processors (in red) are referred to as the “diagonal” processors. Right: load-balanced distribution of nonzero matrix elements on
n(n + 1)/2 processors with n = 4.

The disadvantage of the round-robin distribution of the basis states is that the construction of the matrix becomes
much more cumbersome and time-consuming as the matrix size increases. In order to deal efficiently with the
problem of determining which matrix elements can be nonzero, a ’multilevel blocking scheme’ was introduced,
based on groups of single-particles states [15]. The performance of the code does depend on the particular
choice of how to create these groups – the most efficient choice depends not only on the nucleus, but also on the
number of processors. For simplicity, we have kept these groups constant in the scaling experiments presented
below. Once we know which matrix elements are nonzero, we calculate these matrix elements, and store the
sparse matrix in compressed sparse column (CSC) format. There is almost no MPI communication in this part
of the code, so it should scale reasonably well, provided that the work is well load-balanced.

• Lanczos iterations
Once we have constructed the matrix (and stored in memory, using CSC format, distributed over all processors),
we solve for the lowest eigenvalues using an iterative Lanczos algorithm. Each iteration consists of a matrix-
vector multiplication, followed by an orthogonalization against all previous Lanczos vectors (which are also all
stored in memory, distributed over all processors). Due to the 2-dimensional distribution of the matrix, there is a
significant amount of MPI-communication in this phase: After each matrix-vector multiplication, the resulting
output vector needs to be accumulated on the n diagonal processors. Next, this vector needs to be distributed to
all processors in order to do the orthogonalization, and finally the new input vector needs to be distributed to all
processors. After a fixed number of Lanczos iterations (which is an input variable), the lowest eigenvalues and
the corresponding wave functions are written to disk from the n diagonal processors. This can be done either
with MPI-IO, or with HFD5 [23]; in the scaling experiments presented below we used MPI-IO.

• Evaluation of observables
Finally, we read the wave function back in, and evaluate physical observables such as the rms radius of the
nucleus, its dipole and quadrupole moments, and radiative transitions between the ground state and excited
states. This part of the code is similar to the calculation of the matrix elements. It does not involve a lot of MPI
communication, and should therefore scale reasonably well, provided that the code is well load-balanced.
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Figure 3: Speedup for 12C at Nmax = 4 (left) and for 6Li at Nmax = 12 (right) on Franklin (Cray XT4 at NERSC with 8 GB quad-core processors),
using NN forces only. (The 6Li, Nmax = 12 runs need at least 496 processors with 2 GB of memory each.)

4. Scalibility of MFDn

The biggest challenge for our calculations is the amount of memory required to keep the sparse matrix and the
Lanczos vectors all in memory. We therefore get significantly better performance on the Cray XT4 and XT5 platforms
than on the BlueGene P. Here we report the results of several scaling experiments on Franklin at NERSC and on Jaguar
at ORNL. Franklin is a Cray XT4 at NERSC with 9,572 compute nodes. Each node is a 2.3 GHz quad-core AMD
Opteron processor (Budapest), with 8 GB of memory (2 GB per core). The compute nodes are connected through a
SeaStar2 router.

In addition to our scaling experiments on Franklin at NERSC, we performed scaling runs on the Cray XT5 partition
of Jaguar at ORNL. This Cray XT5 system has 18,688 compute nodes connected through a SeaStar2+ router. Since
October 2009, each compute node contains two 2.6 GHz hex-core AMD Opteron processors (Istanbul) with 16 GB
(8 GB per processor, 1.33 GB per core). With 12 cores per compute node, this system allows in principle for better
testing of the scalibility of the hybrid MPI/OpenMP code.

We restrict ourselves to strong scaling, and considered several problem sizes, as indicated in Table 1.

nucleus model space dimension # of nonzeros
12C Nmax = 4 1,118,926 279,405,126
6Li Nmax = 12 48,887,656 73,247,559,498
14N Nmax = 8 1,090,393,922 900,538,668,203
14Be Nmax = 8 2,790,412,009 2,769,980,757,614
13C Nmax = 6 38,260,781 559,175,214,535

Table 1: Nuclei, model space truncations, basis space dimensions, and the number of nonzero matrix elements in the lower-triangle of the sparse
symmetric A-body Hamiltonian matrix. The first four lines are with NN forces only, the last with NN and NNN forces.

4.1. Speedup with number of MPI processors

In Fig. 3 we show the speedup over a large range of processor counts, using MPI only, with one MPI process
per core on Franklin. The smallest problem, 12C at Nmax = 4, fits on a single compute node (it needs about 4 GB of
memory). Going from a single processor to 28 processors gives a speedup of a factor of 18, and at 100 processors we
have a speedup of about 50. Increasing the processor count even further results in rather poor scaling.

However, we have to keep in mind that this is a rather small problem: the total run-time, including reading of the
input, the setup phase, and writing of all output, is less than 60 seconds at 120 processors and above. Furthermore,
because of the 2-dimensional distribution of the lower-triangle of the matrix, the code is not load-balanced at small
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processor counts: The workload of the off-diagonal processors is approximately twice that of the diagonal processors.
So on 6 processors, we have 3 “diagonal” and 3 “off-diagonal” processors, the code is not load-balanced at all.
However, as we go to (tens of) thousands of processors, this is no longer an issue. In fact, we turn this load-unbalance
to our advantage: most of the IO is done by the diagonal processors only, and some of it can overlap calculations on
the off-diagonal processors.

Indeed, as we move to a larger problem, see the right panel of Fig. 3, we see reasonable scaling on a range of
500 to 4,000 processors. In particular the construction of the sparse matrix scales quite well, whereas the Lanczos
iterations shows a flattening of once we get above about 3,000 processors. As noted above, each Lanczos iteration
involves a signifacant amount of global MPI communication; at 3,000 processors each iteration takes only about 1
second. So as we increase the number of MPI processors even further, we will spend more and more time in MPI
communication, and less on actual computation.

4.2. Hybrid MPI/OpenMPI

As the model space grows, so does the amount of common data, that each processor has access to. Since available
memory is our biggest bottleneck, it would be advantageous if we could eliminate the need for each processor having
its own copy of common data. In addition, for very large numbers of MPI processors, the amount of communica-
tion, and the number of buffers needed for this communication, becomes more demanding. With current multi-core
systems, a hybrid MPI and OpenMP approach might very well be more efficient than pure MPI.

As to the common data, all processors have to access the entire input K-body interaction. For NN interactions,
this is generally not a big problem: for the largest model space considered here, 6Li at Nmax = 12, the total memory
needed for the interaction data is about 150 MB. However, the 3-body interaction data require much more memory:
for Nmax = 6, the NNN input interaction file is about 3 GB, and for Nmax = 8, it is about 33 GB. Each processor
has to have access to these input data, and because of our round-robin distribution of the many-body basis states,
this is effectively random access. The way we currently deal with this problem is by reading the input file on the n
diagonal processors, using MPI-IO and overlapping with computation on the off-diagonal processors. Subsequently,
we make several passes in which different subsets of the n diagonal processors broadcast their part of the input data
to all processors. In this way all processors have access to all input data, though at every pass we have to re-compute
the same quantities. Using OpenMP within a compute node, and MPI between compute nodes, we can significantly
reduce the number of passes needed to process the entire input file on each MPI processor.

We have implemented a hybrid MPI/OpenMP code using OpenMP directives in the three most compute-intensive
phases of the code (the setup phase is not multithreaded):

• Construction of the matrix
For the multithreaded determination of the sparsity structure, the number of coarse column groups in our mul-
tilevel blocking scheme are distributed over the available threads. The actual calculation of the nonzero matrix
elements is parallelized using an OpenMP DO directive for the loop over the columns, which is the outer loop.

• Lanczos iterations
The sparse matrix-vector multiplication is parallelized using an OpenMP DO directive for the loop over the
columns. However, since each matrix block acts both as matrix block for the lower triangle and as the transpose
matrix block for the upper triangle, each thread has to have its own private output vectors for the result of the
transpose matrix-vector multiplication, which are added inside a OpenMP CRITICAL region. This reduces
the anticipated memory gain, in particular when using a large number of threads. The orthogonalization of the
output vector against all previous Lanczos vectors is also parallelized with an OpenMP DO directive.

• Evaluation of observables
The evaluation of select physical observables is parallelized using an OpenMP DO directive for the loop over
the columns, just like the calculation of the matrix elements.

In Fig. 4 we show the speedup for the same two cases as shown in Fig. 3. The left panel is on a single compute
node on Franklin, whereas the right panel is on Jaguar, with one MPI process per compute node, containing two hex-
core processors, so that we can utilize up to 12 threads. On the single processor we see reasonable speedup going from
1 thread to 4 threads, more or less the same for all phases of the code. However, the right panel shows a difference
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Figure 4: Speedup with number of threads for 12C at Nmax = 4 on a single node on Franklin (Cray XT4 at NERSC with 8 GB quad-core processors)
and for 6Li at Nmax = 12 (right) on 120 compute nodes on Jaguar (Cray XT5 with two 8 GB hex-core processors per compute node at ORNL),
using NN forces only.

between the Lanczos iterations on one hand, and the construction of the matrix and calculation of the observables on
the other hand: The speedup for the Lanczos iterations is rather poor. This can be understood if one realizes that each
iteration involves a significant amount of MPI communication. Multithreading speeds up the local computations on
each node, but not the MPI communication between the nodes. Nevertheless, the performance improves all the way
to the maximum of 12 threads, spread over 2 processors per compute node. In other words, if we do need to restrict
ourselves to only one MPI process per compute node (i.e. for memory reasons), it is advantageous to utilize all 12
threads on Jaguar.

In order to judge whether it is more efficient to have one MPI process per core, or one MPI process per node with
multiple threads, we show in Fig. 5 the total CPU time, that is the actual wallclock time times the number of cores,
for two different cases. Ideal scaling would result in a horizontal line; from an application scientist’ point of view,
it is this total CPU time that we want to minimize. In the left panel we see that for the case of 6Li at Nmax = 12
it is most efficient to use one MPI process per core, rather than one MPI process per node in combination with
OpenMP. However, hybrid MPI/OpenMP version with 4 threads per processor scales somewhat better than the pure
MPI case: the solid curves are less steep than the corresponding dotted curves. As the number of cores increases,
hybrid MPI/OpenMP will become more efficient than pure MPI.

Indeed, for a larger problem, 14N at Nmax = 8 which needs at least 10 TB of memory just for storing the matrix and
the Lanczos vectors, multithreading is significantly more efficient, see the right panel of Fig. 5. The points at 8,128
and 12,090 cores are runs using pure MPI with one MPI process per core on Franklin and Jaguar respectively, and
they are 20% to 50% above the corresponding multithreaded data points. It is interesting to note that the construction
of the matrix and evaluation of the observables is more efficient on Jaguar, whereas the Lanczos iterations are more
efficient on Franklin. Most likely, the larger L3 cache and greater memory bandwith of the Istanbul processors in
Jaguar compared to the Budapest processors in Franklin leads to the higher efficiency in the construction of the matrix
and evaluation of the observables. The significant difference in the performance of the Lanczos iterations may be
caused by a bottleneck in the communication from the node into the network, as observed in [24], which compares
the performance of Jaguar (XT5) having two processors per node with that of Franklin (XT4) having one processor
per node. It could also be caused by saturation of the network links on Jaguar. (Jaguar has almost 6 times as many
cores as Franklin, but a similar interconnect (both Seastar2).)

Also, using one MPI process with 12 threads per compute node (containing 2 hex-core processors) seems to be
slightly less efficient than one MPI process with 6 threads per NUMA processor on Jaguar. This is probably due to
memory contention in the former case. As the size of the matrix increases, and thus the required memory increases,
the burden of the MPI communication becomes larger, and it becomes more efficient to use 12 threads per compute
node, despite the memory contention. In the left panel of Fig. 6 we show the performance of different parts of the
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Figure 5: Total CPU time: left for 6Li at Nmax = 12 on Franklin (Cray XT4 at NERSC) using one MPI process per core (dotted) and one MPI
process per node with 4 threads (solid); and right for 14N at Nmax = 8 using one MPI process per node with 4 threads on Franklin (solid line), and
on Jaguar (Cray XT5 at ORNL) using one MPI process per NUMA node with 6 threads (dashed), and one MPI per compute node with 12 threads
(dot-dashed), while the single points at 8,128 and 12,090 cores are with one MPI process per core on Franklin and Jaguar respectively.

code on Jaguar before and after the upgrade from quad-core to hex-core for 14Be at Nmax = 8, which has a dimension
of almost 3 billion. Indeed, we see here that for this case, using one MPI process with 12 threads per compute node is
slightly more efficient than one MPI process with 6 threads per NUMA processor (the blue vs. green bars).

During September and October 2009 Jaguar was upgraded from dual sockets with quad-core processors to dual
sockets with hex-core processors; the memory per node was kept the same (16 GB per compute node, or 8 GB per
processor), and the interconnect also remained the same. In addition to the extra cores, the upgrade to the Istanbul
processors also meant a slightly higher clock speed (2.3 GHz vs. 2.6 GHz), a significantly larger L3 cache (2 MB
vs. 8 MB per processor) and an increased memory bandwidth. Based on the additional cores and increased clock
speed, one would expect a speedup of a factor of 1.7 due to this upgrade, while keeping the number of nodes fixed.
In practice, the effect of the upgrade is heavily dependent on the workload: the speedup was a factor of 2.13 in the
construction of the sparse matrix, whereas the speedup of the Lanczos iterations was only a factor of 1.14. This
difference in performance can be explained by the fact that there is a significant amount of MPI communication at
each Lanczos iteration across all 7,627 MPI processors, which did not improve with the upgrade. On the other hand,
the construction of the matrix benefits greatly from the upgrade: not only the extra cores but also the increased L3
cache and memory bandwith led to a significant speedup of that part of the code. We anticipate that an upgrade of the
interconnect from Seastar2 to Gemini would significantly improve the performance of the Lanczos iterations.

Finally, in the right panel of Fig. 6 we plot the total CPU time for 13C at Nmax = 6 with NN and NNN forces on
Franklin with different versions of the code, starting with V10 (blue curve) which was the version at the beginning of
our SciDAC grant in early 2007. Over the past 3 years, the overall performance has improved by a factor of 3 to 4,
depending on the core count. The current hybrid MPI/OpenMP version is V13, which shows almost perfect scaling
from about 3,000 cores to more than 8,000 cores; below 3,000 cores the total CPU time increases because we need
multiple passes through the 3-body input data, which decreases the efficiency.

5. Conclusion and Outlook

Our newly developed hybrid MPI/OpenMP CI code for nuclear physics performs well on the current Cray XT4/5
platforms. At large core-counts, typically 5,000 and above, the multithreaded version is significantly more efficient
than the pure MPI code, both in terms of memory and in aggregate CPU time. Though we have presented only results
obtained on Cray XT4/5 platforms, our conclusions also hold for other multicore systems. The precise number of
cores at which the hybrid MPI/OpenMP approach becomes more efficient than the pure MPI approach depends on a
number of factors such as the problem size, available memory per processor, memory bandwidth, and network speed.
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We anticipate to take full advantage of the current and future massively parallel multi-core computer architectures
with our hybrid MPI/OpenMP approach.
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